Первый раздел посвящен Data Management Platform (DMP) — платформам управления данными. Эти платформы позволяют управлять всеми типами анонимизированных аудиторных данных. Они собирают их из различных источников в основном с помощью cookie. На основе их анализа сервис выделяет сегменты аудитории, создавая анонимный профиль каждого потребителя, и активирует их через медиа каналы. DMP применяется в диджитал-маркетинге для персонализации контента, управления данными и аналитики. Основными сценариями использования платформы являются оценка дата-потенциала компании, максимизация базы лояльных пользователей, персонализация и измерение эффективности рекламных кампаний.
Функционал платформ клиентских данных — Customer Data Platform (CDP) — описан во втором блоке мануала. Эти платформы собирают пользовательские данные из различных источников, создавая единый профиль потребителя и сохраняя информацию для отслеживания его поведения в будущем. С помощью идентификаторов инструмент таргетирует маркетинговые сообщения и отслеживает результаты на индивидуальном уровне. Централизация каналов коммуникации, построение целевого охвата, ретаргетинг, расширение аудитории бренда, построение CJM — некоторые сценарии, при которых использование платформ клиентских данных будет релевантным.
CDP являются самым развивающимся сегментом martech-индустрии и привлекают большое количество заказчиков, позволяя повысить эффективность коммуникации с потребителем. Спрос на омниканальность, улучшение CJM, прорыв e-com и интерес к cookieless-решениям будут стимулировать дальнейший рост этого сегмента рынка.
Последний блок посвящен Data Intelligence Platform (DIP) — единым платформам для управления данными потребителей, безопасного обмена между владельцами данных, аналитики и омниканальных коммуникаций. Сервис сочетает функционал CDP и DPM, дополняя его инструментами Data Lake и Data Clean Room (DCR). Первый представляет собой репозиторий, который позволяет извлекать полезную бизнес-аналитику из неструктурированных данных. DCR — пространство для безопасного обмена между различными компаниями любыми видами данных и проведения расширенной аналитики.
Исключительно на базе DIP возможно построение кастомных аналитических моделей для сегментации, кросс-платформенная активация, негативный таргетинг, кросс-девайс идентификация, разработка новых брендов, упаковки и креативных концепций.